Sketch the curve represented by the parametric equations

$$x = t^{2} - t$$

 $y = 2t^{3} - 3t^{2} - t$ for $-1 \le t \le 2$

SCORE: ____/4 PTS

GRADED BY ME

Consider the graph of the polar equation
$$r = \frac{11}{6 - 5\sin\theta}$$
. $\frac{1}{6} = \frac{11}{1 - \frac{5}{6}\sin\theta}$

SCORE: /9 PTS

[a] Fill in the blanks.

- [i] The eccentricity is 5.
- [ii] The shape of the graph is a/an ELLIPSE (
- [iii] The equation of the directrix is $y = -\frac{11}{5}$ $ep = \frac{1}{5} \rightarrow \frac{1}{5}p = \frac{1}{5}$
- [iv] Find the <u>rectangular</u> coordinates of the

$$x - intercept(s)$$

$$y - intercept(s)$$

focus/foci

CENTER =
$$(0, \frac{11+-1}{2}) = (0,5)$$

Focus =
$$(0, 2.5) = (0, 10)$$

[a]

[c]

The polar equation of the hyperbola with focus at the pole, eccentricity
$$\frac{7}{2}$$
 and directrix $x = -3$ is $x = \frac{21}{2 - 7\cos\theta}$

The polar equation of the parabola with focus at the pole and directrix
$$y = -5$$
 is

th focus at the pole and directrix
$$y = -$$

$$=-5$$
 is $\frac{1}{1}$

Eliminate the parameter and write the rectangular equation for the curve represented by the parametric equations $x = 2 \ln t$, $y = 5t^6$. Write your final answer in the form y as a simplified function in terms of x.

SCORE: _____/ 4 PTS

$$\frac{x}{2} = \ln t$$
 $y = 5(e^{x})$
 $|t = e^{x}|$ $|y = 5e^{3x}|$
(2)

Find parametric equations for the circle that has a diameter with endpoints (-3, -5) and (12, -5).

SCORE: ____/3 PTS

CENTER = $\left(-\frac{3+12}{2}, -5\right) = \left(\frac{9}{2}, -5\right)\left(\frac{9}{2}, -5\right)$

y= \(\frac{1}{2} \sint -5, \(\D \)

AJ is standing 24 feet from BJ, who is 5 feet tall. AJ throws a football at 30 feet per second in BJ's direction, SCORE: _____ / 3 PTS at an angle of 60° with the horizontal, from an initial height of 6 feet. Write parametric equations for the position of the football.

$$y = h_0 + (v_0 \sin \theta) t - 16t^2$$
 $y = 6 + (30 \sin 60^\circ) t - 6 + (30 \sin 60^\circ) t - 6 + 15\sqrt{3} t - 16t^2$

X= (Vocas O)t